LING570 PROJECT 2

Jennifer Romelfanger Chris Curtis

December 4, 2012

In this project we evaluated combinations of morphological
and structural features in morpheme-separated Korean text to
train both MEMM and CRF models using the Mallet toolset.
We achieved 96.25% morpheme accuracy and 22.11% sen-
tence accuracy over the test data, which significantly improved
on our prior results. We found that certain character-level fea-
tures in particular were highly significant, reflecting probable
regularities in Korean morphology.

I DATA

For this problem we were provided with a training set consisting of 1475
Korean sentences drawn from the Morphologically Annotated Korean
Text corpus|[2]. The provided data consisted of romanized words separated
into morphemes and tagged with a modified Treebank tagset. The data were
divided into a training set of 1000 sentences and a test set of 475 sentences.

2 DESIGN

Our tagger was composed of four basic components: parser, feature extrac-
tor, classifier (provided by Mallet[3]), and front-end driver and evaluator.
The tagger was built using insight gained from our previous Korean tagging
homework [d, [I]] but was developed as entirely new code.

2.1 Parser

An early version of the parser created a queue of morphemes with the
feature extractor as a destination. Although there may be some advantages
to this approach, we found that it was unwieldy and led to complex feature
extraction logic that significantly hindered our ability to quickly test new
feature ideas. This parser was discarded.

The final parser builds each sentence as a linked list of words, which are
in turn built as linked lists of morphemes. This structure allows a great deal
of flexibility in extracting features along with any relevant context.

2.2 Feature Extractor

The heart of our tagger is the feature extractor, which takes sentences
parsed by the parser and emits a feature line for each morpheme to an

output file. The output file can be generated in a format suitable for either
the MEMM or CRF (SimpleTagger) classifiers.

2.2.1 Feature Definition and Control

Features were defined entirely in code, which provided a great deal of
flexibility in exploring the design of various features at the expense of
run-time flexibility. Although each feature is controlled by a flag in our
implementation, thus enabling automated comparison testing, a useful fu-
ture enhancement would be to implement a domain-specific language for
expressing feature templates in text parsed at run-time.l

2.2.2 Feature Templates

We identified several candidate feature templates through exploration and
hands-on testing. These feature templates fell into five broad categories:

Parsing Control of how particular inputs are parsed

Morpheme Current morpheme, n previous/lookahead morphemes, joint mor-
phemes

Word Current word, n previous/lookahead words
Structural Position of morpheme in sentence, in word, etc.
Orthographic Morpheme n-character prefix/suffix, bigrams, trigrams

Our conception of possible features was informed by our previous work
on a simple Korean POS tagger, and superficial observation of Korean
morphology and syntax. In particular, as an agglutinative language, we
expected the role of morphemes to be relevant to the position in the word.
We also expected the position of certain morphemes within a sentence (e.g.
the first morpheme of the final word) to be highly relevant.

The individual feature templates we tested are given in Table [I].

2.3 Classifier
We tested our feature sets primarily using the Mallet MEMM classifier

with Markov order 2 due to the rapid training/evaluation cycle. Once we
identified an optimum feature set, we trained and tested a CRF model.

2.4 Front-End
Our front-end code manages the “administrative” aspects of the task, in-

cluding control of the parser and feature extractor. It also performs evalua-
tion against the gold standard tags to produce the required output file.

3 EVALUATION
3.1 Feature Selection

After the broad set of feature templates were identified and implemented,
we performed some initial testing by hand to identify particularly strong

1 A dynamic feature-definition capability such as this would also lend itself to automated
exploration of the potential feature space using e. g. genetic methods.

Features

Class Name Value Definition
Parsing CollapseNumbers token (\{Digit}]+ — "<NUM>"
Morpheme MorphsHistory = n morpheme(s) Mm_q,..,M_y
MorphsFuture = n morpheme(s) Maq, ..., My
MorphPrevPair string (m_1, mp)
MorphPrevPrevPair string (m_p,m_q)
MorphTriple string (m_p, m_1, mgp)
MorphMidTriple string (m_q1, my, m41)
MorphBack2 string (m_y, mp)
MorphForward?2 string (mo, m42)
Word CurrWord word wo
WordHistory word(s) WO, e, Wy
WordFuture word(s) WO, ey Wy
Structure MorphEPosition integer len(w) — posy(m)
MorphlsPenult binary posw(mp) =t—1
MorphlsPostPrefix binary posy(mp) =2
MorphSPosition posy(m) posy(m)
SentenceEPosition integer len(s) — poss(w)
SentencePosFirstOnly control use poss only for m; in word
SentenceSPosition integer poss(w)
WordEnd binary posw(mp) =t
WordPenult string mp_q
WordStart binary posy(mp) = 1
Orthographic ~ CharBigrams string char 2-grams
CharTrigrams strings char 3-grams
CharPrefix{1,2,3} string {1,2,3}-prefix
CharSuffix{1,2,3} string {1,2,3}-suffix

Table 1: Feature templates

Features Accuracy

hist! future? splits® 3-prefix* trigrams® Morpheme Sentence Unseen
1 0 yes no no 96.7793 32.6737 86.4686
1 0 yes yes no 96.7400 33.6634 87.1287
2 1 no yes yes 96.7596 29.7030 87.4587

! MorphHist

2 MorphFuture

3 Both MorphBack2 and MorphForward2
CharPrefix3

> CharTrigrams

Table 2: Devtest Results

or weak features. This first pass showed that the word-level features were
useless at best, and often reduced the accuracy by 10% or more, so they were
not included in further evaluations. We also chose to always replace num-
bers with a single token (CollapseNumbers), as there seemed to be no theo-
retical basis for treating individual numbers as distinct morphemes /words.?
The next step in our analysis was automated large-scale testing of com-
binations of features, against 10% (n=101) held-out training sentences. We
tested 281 different combinations of features, achieving maximum accura-
cies of 96.78% by morpheme, 33.66% by sentence, and 87.46% for unseen
morphemes. Although different combinations of features maximized each
metric, the per-morpheme accuracy only varied by 0.03% regardless of the
metric optimized for. The devtest results are summarized in Table .

3.2 Feature Evaluation

We then evaluated these feature combinations against the test data. Al-
though the accuracies were, as expected, lower, the results were still within
1% of the devtest performance. In addition, a single feature set gave the best
results on all three metrics. These results are summarized in Table 3.

3.3 Feature Space Exploration

To further evaluate the performance of various features, we then applied
our automated testing to the test data. Although we did not exhaustively
search the combinatorial feature space, we did test 1022 different combi-

This assumes that Korean is not marked based on number value. In a hypothetical language
where 100 and 10 have different distributions, this assumption would obviously not hold.
In the absence of any relevant training data we also ignored the potential impact of differing
treatment of noun classes.

Features Accuracy
hist future splits 3-prefix trigrams Morpheme Sentence Unseen
1 0 yes no no 95.7776 19.5789 85.9387
1 0 yes yes no 95.7863 19.1579 85.9760
2 1 no yes yes 96.2463 22.1053 86.9110

Table 3: Test Results

nations. The highest-performing model in these tests achieved 96.2463%
morpheme accuracy, 20.6316% sentence accuracy, and 87.472% unseen-
morpheme accuracy. This model was nearly identical to our devtest-selected
model, but with an additional morpheme of lookahead (MorphFuture=2).
Although this enhanced the unseen-morpheme accuracy by approximately
0.5%, it also decreased our sentence accuracy by nearly 2%.

3.4 Statistical Meta-analysis

We then performed regression analysis® on the feature combinations data
in order to identify which features contributed most significantly to accu-
racy. The first analysis treated all CharSuffix and CharPrefix combinations
as asingle feature, i.e. eitherall 1-, 2-, and 3-character prefixes and suffixes,
or none; this feature was consistently the strongest contributor to accuracy
(B = 05154, p < 0.001). Other strong predictors (p < 0.001) were
CharBigrams, CharTrigrams, MorphHist, WordStart, and MorphSPos.
These results are summarized in Table |.

We then performed a narrower analysis to isolate the predictive power
of the character prefix and suffix features by holding all other features con-
stant and only varying the mixture of character suffixes and prefixes. The
most significant factor here for morpheme accuracy was CharTrigrams

(B = 05747, p < 0.001); CharBigrams was the strongest predictor for

sentence (5 = 4.069, p < 0.001) and unseen morpheme (f = 1.171,
p < 0.001) accuracy. These results are summarized in Table 3.

3.5 CREF Classifier

Finally, we attempted to train CRF models using our top feature set. With
the same features enabled and Markov order 1, the Mallet CRF classifier
achieved morpheme accuracy of 94.1026%, sentence accuracy of 12.6316%,
and accuracy on unseen morphemes of 84.1810%. We attempted to train
CRF models with Markov order 2, but were unsuccessful in running a
training cycle to completion.?

3 Thanks to Micah Jensen (Georgetown University) for his assistance with statistical
interpretation. Errors in analysis are solely ours, not his.
4 The average training run was in progress for well over 24 hours before appearing to stall.

~

P
Feature Morpheme Sentence Unseen
CharSuffix 0.5154 0.5030 0.6424
CharBigrams 0.3689 0.4602 0.4408
CharTrigrams 0.3223 0.3060 0.2541
MorphHist 0.2249 0.3170 0.2079
WordStart 0.1673 0.1230 0.0924
MorphSPos 0.1028 0.0848 0.0576

Table 4: Feature Statistics (all p < 0.001)

P

p

Feature Morpheme Sentence Unseen

CharSuffix1 0.099112 0.5105' 0.86123

CharSuffix2 0.16483 NS 0.94373

CharSuffix3 0.36063 1.6863 1.9233

CharPrefix1 0.07948! 0.6343%2 0.8096°

CharPrefix2 0.2219% 0.69622 NS

CharPrefix3 NS NS NS
CharBigrams 0.5569° 4.069% 1.171°
CharTrigrams 0.5747% 1.160% 0.83023

1'p <0.05

2p <001

3 p < 0.001

NS Not significant

Table 5: Character-Level Feature Statistics

4 DISCUSSION
4.1 Features

As Korean is an agglutinating language, we expected the position of mor-
phemes within the word and the sentence to be significant, and this was
indeed the case in our testing. We also expected the relative positions of
morphemes to be significant, reflecting the SOV word order and presumed
rules for combining afhixes. This was also borne out by our testing, although
to a much lesser degree than anticipated. We suppose this may be partially
due to the characteristics of this corpus; as all sentences were news articles
from a single agency, the range of usage and variation in structure and
register may be significantly constraint as compared to a larger corpus.

The features that provided the most incremental gain, however, were the
character-level features. On average, these features increased morpheme
accuracy by a full 3%. We suspect this unexpectedly-large effect may be due
to fusional and/or morphophonemic (e.g. -eul/-reul) aspects of Korean that
we do not have access to directly.

4.2 Classifiers

Our biggest disappointment in this project was the difficulty in working
with Mallet’s CRF classifier. Once we had identified a good candidate
feature set using the MEMM model, the Markov order 1 CRF model was
significantly less accurate. This is not especially surprising given that the
MEMM model was order 2, but the massive increase in training time (not
to mention failure to complete) made any potential accuracy improvement
largely irrelevant.

5 SUMMARY AND FUTURE WORK

The project was a mixture of great successes (3% improvement with a
handful of features) and great disappointments (the CRF classifier). It
was particularly gratifying to make such dramatic improvements over our
previous attempts: 91.7% [4] and 90.8% [[I]]. It was also interesting to find

that while significant improvement was due to applying a trigram model,
good feature selection had an even more significant impact.

The logical next step would be to evaluate these models against an ex-
panded corpus, again seeking to identify the most effective features. An-
other major next step would be training a higher-performance CRF im-
plementation; the difficulties we faced made it impossible to make any
meaningful comparisons to the MEMM implementation.

REFERENCES

[1] Chris Curtis. LING570 Homework 3 Report. 2012.

[2] Na-Rae Han. Morphologically annotated korean text.
http://www.ldc.upenn.edu/Catalog/catalogEntry. jsp?
catalogId=LDC2004T03, 2004.

[3] Andrew Kachites McCallum. MALLET: A Machine Learning for
Language Toolkit. http://mallet.cs.umass.edu, 2002.

[4] Jennifer Romelfanger. LING570 Homework 3 Report. 2012.

http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2004T03
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC2004T03

	Data
	Design
	Parser
	Feature Extractor
	Feature Definition and Control
	Feature Templates

	Classifier
	Front-End

	Evaluation
	Feature Selection
	Feature Evaluation
	Feature Space Exploration
	Statistical Meta-analysis
	CRF Classifier

	Discussion
	Features
	Classifiers

	Summary and Future Work

